Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Sci China Life Sci ; 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: covidwho-2297189

RESUMEN

Protein-biomolecule interactions play pivotal roles in almost all biological processes. For a biomolecule of interest, the identification of the interacting protein(s) is essential. For this need, although many assays are available, highly robust and reliable methods are always desired. By combining a substrate-based proximity labeling activity from the pupylation pathway of Mycobacterium tuberculosis and the streptavidin (SA)-biotin system, we developed the Specific Pupylation as IDEntity Reporter (SPIDER) method for identifying protein-biomolecule interactions. Using SPIDER, we validated the interactions between the known binding proteins of protein, DNA, RNA, and small molecule. We successfully applied SPIDER to construct the global protein interactome for m6A and mRNA, identified a variety of uncharacterized m6A binding proteins, and validated SRSF7 as a potential m6A reader. We globally identified the binding proteins for lenalidomide and CobB. Moreover, we identified SARS-CoV-2-specific receptors on the cell membrane. Overall, SPIDER is powerful and highly accessible for the study of protein-biomolecule interactions.

2.
Cytokine Growth Factor Rev ; 63: 44-57, 2022 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1729671

RESUMEN

The current coronavirus disease 2019 (COVID-19) pandemic has presented unprecedented challenges to global health. Although the majority of COVID-19 patients exhibit mild-to-no symptoms, many patients develop severe disease and need immediate hospitalization, with most severe infections associated with a dysregulated immune response attributed to a cytokine storm. Epidemiological studies suggest that overall COVID-19 severity and morbidity correlate with underlying comorbidities, including diabetes, obesity, cardiovascular diseases, and immunosuppressive conditions. Patients with such comorbidities exhibit elevated levels of reactive oxygen species (ROS) and oxidative stress caused by an increased accumulation of angiotensin II and by activation of the NADPH oxidase pathway. Moreover, accumulating evidence suggests that oxidative stress coupled with the cytokine storm contribute to COVID-19 pathogenesis and immunopathogenesis by causing endotheliitis and endothelial cell dysfunction and by activating the blood clotting cascade that results in blood coagulation and microvascular thrombosis. In this review, we survey the mechanisms of how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces oxidative stress and the consequences of this stress on patient health. We further shed light on aspects of the host immunity that are crucial to prevent the disease during the early phase of infection. A better understanding of the disease pathophysiology as well as preventive measures aimed at lowering ROS levels may pave the way to mitigate SARS-CoV-2-induced complications and decrease mortality.


Asunto(s)
COVID-19 , Trombosis , Síndrome de Liberación de Citoquinas , Humanos , Estrés Oxidativo , SARS-CoV-2
3.
Int Immunopharmacol ; 97: 107686, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-1188660

RESUMEN

The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is having a disastrous impact on global health. Recently, several studies examined the potential of vitamin D to reduce the effects of SARS-CoV-2 infection by modulating the immune system. Indeed, vitamin D has been found to boost the innate immune system and stimulate the adaptive immune response against SARS-CoV-2 infection. In this review, we provide a comprehensive update of the immunological mechanisms underlying the positive effects of vitamin D in reducing SARS-CoV-2 infection as well as a thorough survey of the recent epidemiological studies and clinical trials that tested vitamin D as a potential therapeutic agent against COVID-19 infection. We believe that a better understanding of the histopathology and immunopathology of the disease as well as the mechanism of vitamin D effects on COVID-19 severity will ultimately pave the way for a more effective prevention and control of this global pandemic.


Asunto(s)
COVID-19/prevención & control , Vitamina D/farmacología , Vitamina D/uso terapéutico , Inmunidad Adaptativa/efectos de los fármacos , COVID-19/etiología , COVID-19/inmunología , Suplementos Dietéticos , Humanos , Inmunidad Innata/efectos de los fármacos , Estaciones del Año , Índice de Severidad de la Enfermedad , Vitamina D/inmunología , Vitamina D/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA